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Introduction

About This Manual

This manual explains how to implement a negotiating agent based on the
NB3 algorithm. It is part of a starter package which can be downloaded
from http://www.iiia.csic.es/~davedejonge/nb3. The starter package
includes:

• This manual

• A complete example java project containing an implemented negotia-
tion domain, and an implemented agent based on the NB3 algorithm.

The java project contains a folder named ’lib’ which contains the NB3 library,
as well as two other libraries that are required to run the negotiation server.
Make sure that all these libraries are added to the class path when compiling
the project.

We will not give an in-depth treatment of the topic of automated nego-
tiations. We assume that you are already familiar with this topic, and that
you know the meaning of terms like ‘reservation value’, ‘aspiration level’, ‘bi-
lateral negotiations’, ‘multilateral negotiations’ and ‘negotiation protocol’.
Furthermore, we assume the reader is familiar with Java programming and
tree search algorithms such as Branch & Bound.

About NB3

The NB3 algorithm is an algorithm that allows an agent to negotiate with
other agents in domains where the number of possible deals is very large.
The fact that there could be millions of possible deals means that we cannot
expect the agent to know the utility values of all possible deals. Therefore,
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the agents must apply a search algorithm to explore the space of possible
deals.

We make the following assumptions:

• Negotiations do not need to be bilateral, they may involve up to 64
negotiating agents.

• The number of negotiating agents is fixed and known beforehand.

• There is a pre-defined set of possible world states.

• Every agent has a finite set of actions it can take to change the current
world state.

• Each negotiator has an individual utility function over the set of pos-
sible world states.

• For any possible deal the agent is at least able to estimate the deal’s
utility value for every other agent.

• Agents can make binding agreements with each other about the actions
each will take.

• Agents are selfish: each agent wants to take those actions that increase
its own utility. The agents have no interest in optimizing other agents’
utility functions or reaching a social optimum.

• The number of possible agreements is too large to apply exhaustive
search. For example, it could be as large as 10100.

• The agents negotiate about their plans of action under the Unstruc-
tured Negotiation Protocol (see Section 1.3).

• There is a fixed deadline for the negotiations which is equal for all
agents and known to all agents.

• An agent that runs the NB3 algorithm makes no assumptions about
the algorithms applied by the other agents it is negotiating with. In
fact, the other agents may even be humans.

The set of all possible deals that the agents can make with one another is
known as the agreement space. The idea of NB3 is that it applies a Branch
& Bound algorithm to explore the space of possible deals and determine
which deal is the best to propose to the other agents.

Normally, Branch & Bound is applied to determine a solution that max-
imizes the value of a certain utility function. In the case of negotiations
however, there is not one utility function, but instead there is a separate
utility function for each negotiator. Therefore, when deciding on a deal to
propose the agent cannot simply propose the deal that yields highest utility
to himself. Instead, it should propose a deal that also yields a reasonable
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amount of utility to the other agents involved in the deal, since they will
otherwise not accept it.

This means that unlike an ordinary Branch & Bound algorithm, the NB3

algorithm stores an upper- and lower- bound for the utility values of each
agent. So if there are 5 negotiators, then each node in the search tree stores
5 upper bounds, and 5 lower bounds.

1 Preliminaries

1.1 Example Domain: The Commodity Market

Before we explain how to implement a negotiating agent, we first explain in
this section the test case that we will be using throughout the rest of this
tutorial.

The example domain is a domain in with 5 negotiators, let’s call them
Alice, Bob, Charles, David, and Eve, trading in a market. In our notation
we will simply refer to them with the letters a, b, c, d, e and we will use x
as a variable that can stand for any of those negotiators. The negotiators
trade in 5 types of commodities, namely:

• Gold, Oil, Iron, Grain, and Wood

Each negotiator possesses a number of units of each of these commodities
(his or her ‘assets’), and each negotiator may be interested in different com-
modities. Therefore, they may negotiate in order to swap some of their
commodities with others.

The initial assets of each negotiator is indicated with a vector. For
example: γa = (3, 4, 5, 7, 9), means that Alice has 3 units of Gold, 4 units of
Oil, 5 units of Iron, 7 units of Grain, and 9 units of Wood in her possession.
Similarly, the assets of Bob are denoted by γb, the assets of Charles by γc
etcetera.

Each negotiator owns a factory which enables him or her to convert these
commodities into some product that has a certain value expressed in Dollars
(we will ignore the process of selling the product, so we will just assume that
the factories directly produce Dollars). The goal for each negotiator is to
earn as many Dollars as possible. However, since each negotiator has a
different kind of factory, they need different amounts of each commodity to
earn their Dollars. The required commodities are also denoted as vectors.
For example, δa = (0, 0, 2, 2, 0) means that Alice needs 2 units of Iron and
2 units of Grain to earn 1 Dollar, and that she does not need any Gold, Oil
or Wood at all.
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Suppose for example that γa = (0, 0, 9, 3, 0) and δa = (0, 0, 3, 1, 0), then
Alice can produce 3 Dollars, because γa = 3 · δa. However, the assets may
not always be an exact multiple of the requirements. For example if we have
γa = (0, 0, 9, 4, 0) and δa = (0, 0, 3, 1, 0). In that case Alice can still only
produce 3 Dollars, but she will have 1 unit of Grain left after the production.
Furthermore, if we have γa = (3, 4, 5, 7, 9) and δa = (0, 0, 2, 2, 0), Alice is only
able to produce 2 Dollars. Note that even though she has enough Grain to
produce 3 Dollars, she cannot do so, because he doesn’t have enough Iron.

Formally, if we denote the number of Dollars that a negotiator x can
produce by fx then fx is defined as the largest positive integer, such that
the following holds:

∀j ∈ {1, 2, 3, 4, 5} : fx · δx,j ≤ γx,j

where δx,j and γx,j denote the j-th entry of the vectors δx and γx respectively.
Now, the negotiators may increase their revenues by exchanging their

commodities. For example, suppose we have:

γa = (4, 3, 5, 0, 0) δa = (2, 1, 4, 0, 0)

γb = (0, 8, 3, 3, 3) δb = (0, 3, 0, 1, 1)

Without negotiations, Alice can earn 1 dollar, while Bob can earn 2 Dollars.
However, if Alice and Bob agree on a deal in which Alice gives 1 unit of Oil
to Bob, and Bob gives 3 units of Iron in return, then the new situation will
be:

γ′a = (4, 2, 8, 0, 0) δa = (2, 1, 4, 0, 0)

γ′b = (0, 9, 0, 3, 3) δb = (0, 3, 0, 1, 1)

Which allows Alice to produce 2 Dollars instead of 1, and allows Bob to
produce 3 Dollars instead of 2. Both negotiators profit from this deal.

In the real world when you negotiate you do not always know the exact
utility functions of your opponents. In fact, this is important strategic infor-
mation that you normally try to hide from your opponents. Therefore, in the
Commodity Market domain the agents do not exactly know the requirement
vectors of their opponents. Instead, each agent receives a the requirement
vector of each opponent with a little bit of random ‘noise’ added, so that
they do have approximate knowledge of their opponents, but not precise
knowledge.

4



1.2 Notation and Definitions

We will now introduce some definitions and notations that are necessary to
understand the NB3 algorithm.

Definition 1. A negotiation domain is a tuple 〈A, Ô, f̂ , E , ε0, tdead〉 where
A is a set of agents A = {α1, α2, . . . αn}, where Ô is a tuple of sets of
actions, one for each agent: Ô = (O1,O2 . . .On), where f̂ is a tuple of
utility functions, one for each agent: f̂ = (f1, f2, . . . fn), where E is a set of
world states, ε0 ∈ E the initial world state, and tdead ∈ R+ the deadline for
the negotiations.

A negotiation domain has a fixed set of negotiating agentsA = {α1, α2, . . . αn}.
In the commodity market for example, this is the set {Alice,Bob, Charles,David,Eve}.
Furthermore, there is a set of world states, which represent the possible sit-
uations. In the commodity market a world state ε is given as a 5x5 matrix,
in which each row is the vector of assets of a negotiator:

ε = (γa, γb, γc, γd, γe)
T .

The set of all possible world states E is therefore the set of all 5x5 matrices
with non-zero integer entries.

Each agent αi ∈ A has a set of actions Oi to its disposal, and each of
these actions can be executed, causing the state of the world to change. So
each action ac ∈ Oi is in fact a function ac : E → E , ac(ε) = ε′, where ε
is the current world state and ε′ is the new world state resulting from the
execution of the action.

In the commodity market, an action consists of one agent giving a num-
ber of units of a certain commodity to another agent. For example, “Alice
gives 1 unit of Oil to Bob” is an action. Alice is the agent who executes this
action ac, so it is an element of her action set Oa. In this case we call Alice
the ‘supplier’ of the action and Bob the ‘consumer’ of the action.1 When
this action is executed it alters the asset-vectors of both Alice and Bob and
hence changes the world state ε to a new world state ε′:

ac(ε) = ac((γa, γb, γc, γd, γe)
T ) = (γ′a, γ

′
b, γc, γd, γe)

T = ε′

The union of the sets of actions of all agents is denoted as O.

O =
⋃
i∈A
Oi

1the terms ‘supplier’ and ‘consumer’ are specific to the Commodity Market domain
and may not have any meaning in other negotiation domains.
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Each agent αi has a utility function over the set of world states fi : E → R.
In the commodity market this utility function is simply the amount of dollars
the negotiator can earn. We should note that although formally the value of
fi is defined for a world state ε, in the case of the commodity market it only
depends on the agent’s own asset vector γi. Furthermore, note that in the
commodity market the utility functions are determined by the requirement
vectors δi. So by specifying δi one indirectly specifies fi.

Definition 2. A plan p is a set of actions: p ⊆ O.

A plan p acts on a world state ε by letting all the actions ac ∈ p act on
ε (to keep the the discussion simple we assume that the order in which the
actions are executed is irrelevant).

Definition 3. The Agreement Space is the set of all possible plans: 2O.

Definition 4. The set of participating agents pa(p) of a plan p is the set
of all agents that have at least one action in the plan:

pa(p) = {αi ∈ A | p ∩Oi 6= ∅}.

In the commodity market a plan could be for example consist of two
actions. where the first action is that Alice gives 1 unit of Oil to Bob, and
the second action is that Bob gives 3 units of Gold to Alice. In this plan
Alice and Bob are the participating agents.

The idea is that the agents propose plans to each other. If all par-
ticipating agents of a proposed plan accept the proposal then every agent
participating in it is obliged to execute his or her actions in that plan.

Since the execution of a plan brings about a new world state, we some-
times refer to the “utility value of a plan” when we actually mean the utility
value of the world state resulting from executing that plan.

1.3 The Unstructured Negotiation Protocol

The most common negotiation protocol in the literature is the Alternating
Offers Protocol, in which two negotiators take turns to make proposals to
each other until either one accepts the last deal proposed by the other.

The problem with this protocol however, is that it only works for bilateral
negotiations, and that we think it is unnecessarily restrictive to prohibit a
negotiator to make a proposal while it is not his turn.

Therefore, the NB3 algorithm is developed with a simpler protocol in
mind: the Unstructured Negotiation Protocol. In this protocol any agent
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can make any proposal whenever it wants: they do not take turns. There-
fore, when you have made a proposal, you can immediately make another
proposal, even if no one has replied to your first proposal. Furthermore,
you are never obliged to reply to any proposal. Apart from accepting it,
rejecting it, or making a counter proposal, you can also choose to simply
ignore it.

Also, unlike the Alternating Offers protocol, a deal may involve more
than two agents. The deal is considered officially binding once all agents
involved in the proposed plan have accepted it.

This protocol does however require the presence of a special agent known
as the Notary. This agent records all the proposals that have been made and
records who has accepted those proposals. Once a certain proposal has been
accepted by all its participating agents the Notary will send a confirmation
message to all participating agents to notify them that the deal is officially
binding. In some in cases it may happen that the negotiators accept a deal
x that is inconsistent with a deal y that has been made earlier. In that
case the Notary will send a message to notify that the deal y is illegal, and
therefore it is not considered a binding deal.

2 How NB3 Works

As explained, the negotiating agents will propose plans to each other. So the
question is: how does the agent determine which plans it should propose?

If there are only a few possible plans to propose this is easy. The agent
just needs to calculate the utility value of each possible plan and sort them
in order of decreasing utility. The agent can then start by proposing the
plan with highest utility, and then slowly start proposing less and less prof-
itable deals, until one of the proposals is accepted, or until one of the other
negotiators makes a proposal that is good enough to accept.

However, if the agreement space contains millions of possible plans to
propose the agent will not have enough time to determine the utility values
of each one of them. Instead, the agent needs to apply a smart search
algorithm.

The NB3 algorithm explores the agreement space by means of a heuristic
tree search. Every node represents a possible plan to propose, and hence,
every time it creates a new tree node, it determines the utility value of that
plan for each agent participating in it.
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Figure 1: The search tree. The node marked n represents the partial plan
consisting of the actions ac1, ac4 and ac6.

2.1 Expanding the Tree

The NB3 algorithm expands a search tree according to a best-first strategy.
In the simplest case, each node is labeled with a certain action from the
set of possible actions O. Each node ν can then be identified with a plan,
denoted by path(ν), that consists of all the actions that label the arcs in
the path from the root to ν. In Figure 1 the node marked n represents the
partial plan consisting of actions ac1, ac4 and ac6, so for that node we have
path(ν) = {ac1, ac4, ac6}. Moreover, we can also identify a world state εν
with this node, which is the world state that would result from letting the
plan path(ν) act on the initial world state ε0.

We have here considered actions as the atomic building blocks of plans.
In practice however, it is often easier to model actions as being built up from
smaller constituents themselves as well. For example, in the commodity
market example an action is the act of one agent giving a number of units
of some commodity to another agent. Such an action can be seen as a tuple
of four integers. The first integer is the ID of the supplying agent, the
second integer is the ID of the commodity being given, the third integer is
the number of units of that commodity that are being given, and the fourth
integer is the ID of the consuming agent. In such cases it is often easier to
label each node with an integer that represents one of these constituents.
That is: every node with depth 1 (i.e. the children of the root) will be
labeled with a supplier ID, every node with depth 2 (the grand children of
the root) will be labeled with a commodity ID, nodes of depth 3 are labeled
with a quantity, nodes of depth 4 are labeled with a receiver ID, and nodes
of depth 5 are then again labeled with a supplier ID, etcetera.
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This means that if we follow a path from the root to a leaf node, every
fourth node represents an action, and only if the length of the entire path
is a multiple of 4 it represents a plan.

2.2 Bounds

Branch & Bound algorithms require that each node ν stores upper- and
lower bounds for the utility value of the plan corresponding to this node.
In the case of negotiations, however, an agent should not only take its own
utility into account but also the utility of its negotiation partners, because
otherwise they would not accept any proposals.

This means that a node only represents a good proposal if it also increases
the utility of the other agents sufficiently. For this reason, each node does
not only compute bounds for the utility of the agent on which it is running,
but also for every other agent.

The algorithm, running on agent α1, is thus assumed to have a model of
the utility functions fi of the other agents, and uses this model to calculate
for every node ν and every agent αi ∈ A the following bounds (we assume
that the current state of the world is ε0 and we use the notation εν to indicate
the world state resulting from executing the plan path(ν) corresponding to
node ν. That is: εν = (path(ν))(ε0)).

• For each node ν and agent αi an upper bound: ubi(ν). This is
the maximum utility αi may achieve from any plan compatible with
path(ν).

ubi(ν) = max
p⊂2O
{fi(p(εν)) | path(ν) ⊆ p}

• For each node n and agent αi an intermediate value: ei(ν). The
utility agent αi receives if exactly the plan path(ν) is executed and no
other actions.

ei(ν) = fi(εν) = fi((path(ν))(ε0)).

• For each node ν and agent αi a lower bound: lbi(ν). The minimum
utility that αi may achieve from any plan compatible with the plan
path(ν).

lbi(ν) = min
p⊂2O
{fi(p(εν)) | path(ν) ⊆ p}

The upper bounds are decreasing, and the lower bounds are increasing.
That is: for any node ν and any child ν ′ of ν we have:

ubi(ν) ≥ ubi(ν ′) and lbi(ν) ≤ lbi(ν ′)
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This implies that the lower bound for agent αi of the root node is the lowest
cost agent αi could ever achieve.

In practice, one may not always be able to calculate these bounds exactly,
for two reasons. Firstly, because you may not have complete knowledge of
the world state and of the other negotiators’ utility functions. And secondly,
because you simply do not have enough time to compute these quantities
exactly in real time. Therefore, in some cases your implementation may
only be able to estimate them.

The reservation value of an agent αi is equal to the intermediate value
of the root node:

rvi = fi(ε0) = ei(ν0)

The intermediate value of a node is the utility that the agent will receive if
exactly the actions in the path from this node to the root node are executed.
So if ei(ν) < rvi the plan path(ν) is not profitable for αi. Therefore we say
a node ν is rational for agent αi iff ei(ν) > rvi.

Definition 5. A node ν is individually rational iff it is rational for all
agents participating in path(ν).

2.3 Pruning

Since NB3 performs a best-first search, we need a heuristic h that calculates
a value for each node: h(ν) ∈ R+ to rank the nodes. We call this the
expansion heuristic. Each time after splitting a node the algorithm picks
the leaf node with the highest expansion heuristic from the tree to be split
next. The value of h depends on the values of the bounds defined above.
The NB3 algorithm comes with a default method to calculate the expansion
heuristic of a node based on its bounds. However, this method can optionally
be overridden so one can implement a better one that takes more domain
specific information into account.

The upper bound is used for pruning: it defines the highest utility an
agent could possibly achieve in any descendant of the node. If ubi(ν) < rvi
for some agent αi participating in path(ν), it means that not only this plan
is unprofitable for agent αi, but also any plan that extends path(ν) would
be unprofitable for αi, so in that case agent αi would never agree with any
plan descending from node ν and therefore this node can be pruned.

Furthermore, NB3 also applies another form of pruning. Whenever agent
αi gets committed to a plan p, all actions in O that are incompatible with
the actions in p become unfeasible so αi can prune all nodes that have any
of the incompatible actions in their paths to the root.

10



2.4 Making Proposals and Accepting Proposals

Until now we have discussed how NB3 searches through the agreement space
to find potential plans that can be proposed to the other negotiators. In
this section we will discuss how the algorithm decides which of those plans it
should propose and which of the plans proposed by the other agents should
be accepted.

2.4.1 Aspiration Levels

During the negotiations the agents regularly need to make a choice between
proposing a new offer, accepting an offer, or continue searching. The NB3

algorithm bases this decision on three values: the time t passed since the
start of the negotiations, the normalized utility ūα it would receive from a
possible deal and the normalized utility ūβ the opponents β receive from
that deal.

Definition 6. The normalized utility of a plan p for agent αi, in world
state ε0, is defined as the utility divided by the maximum utility it could
possibly achieve: ūi(p) = fi(p(ε0))−rvi

ub(ε0)−rvi .

Definition 7. The opponent utility of a plan is the product of all the
normalized utilities of the other agents participating in the plan.

ūpa(p) =
∏

i∈pa(p)\{α}

ūαi .

with the extra restriction that ūpa(p) is zero if ūi is negative for any αi ∈
pa(p).

To make a decision, agent α compares it own normalized utility and the
opponent utility with two values, denoted as mα

α(t) (the self-aspiration-level)
and mα

β(t) (the opponent-aspiration-level) respectively, which are fixed, time
dependent functions. It is important to understand that although mβ rep-
resents an aspiration level for the utility of β, this value exists in the mind
of α. It is the amount of utility that α believes to be necessary to offer to
β.

Definition 8. A plan p is more selfish than plan p′ iff ūi(p) > ūpa(p
′).

For a given time instant t we say p is selfish enough iff ūi(p) > mα
α(t).

Given a set of plans P , the plan p ∈ P that maximizes ūi(p) is called the
most selfish plan of P .
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Definition 9. A plan p is more altruistic than plan p′ iff ūpa(p) > ūpa(p
′).

For a given time instant t we say p is altruistic enough if ūpa(p) > mpa(t).
Given a set of plans P , the plan p ∈ P that maximizes ūpa(p) is called the
most altruistic plan of P .

Notice that ‘selfish’ and ‘altruistic’ as defined here are not necessarily
each other’s opposites. If plan p yields more utility than p′, for both negotia-
tors, p is more selfish and more altruistic than plan p′. mα

α(t) is a decreasing
function, and mα

β(t) is an increasing function.
At given moments t separated by time intervals of fixed length, α decides

what to do: to propose a new plan, to accept a previously proposed plan,
or to continue searching for better plans (the length of these intervals is
a parameter of the algorithm). The NB3 algorithm will only accept or
propose any plan that is individually rational and selfish enough. It will
only propose a new plan p if there is no standing proposal p′ proposed to α
that is more selfish than p (because then it prefers to accept p′). And from
all candidate plans it could propose, it prefers the most selfish plan that is
altruistic enough. If however no plan is altruistic enough, it prefers the plan
that is most altruistic. The algorithm intends to find plans for which the
opponent-utility is as close as possible to the opponent-aspiration-level. The
self-aspiration level imposes an extra criterion, that determines whether the
plan is selfish enough to be proposed, or whether it is better to continue
searching instead.

The aspiration levels have the following expressions:

mα
α(t) = 1− e

−a1 t
tdead − 1

e−a1 − 1
(1)

mα
β(t) =

e
−a2 t

tdead − 1

e−a2 − 1
(2)

Their graphs are plotted in Figure 2. Notice that mα
α decreases from 1 to

0 and mα
β increases from 0 to 1. The higher the values of a1 and a2, the

faster the agent concedes. Therefore a1 and a2 are called the concession
degrees. The strategy of the agent can be adapted by adjusting these two
parameters. The default values for the concession degrees are a1 = 2 and
a2 = 4.

The fact that mα
α and mα

β go to 1 and 0 respectively makes this strategy
a very weak one for bilateral negotiations, since it can be easily countered
by any opponent. The opponent β would simply not concede, but wait
until mα

β is so high that α will propose a plan that is highly favorable to

12



Figure 2: The graphs of mα
α and mα

β for several values of a1 and a2.

β. However, one should keep in mind that this strategy is developed for
multilateral negotiations. In the multilateral case, agent β does not have
the opportunity to wait until α makes a highly altruistic offer, since β has
competition from other agents. If β does not concede, α might reach deals
with some of the other agents, leaving β with nothing.

Finally, note that this strategy never rejects any proposal. Instead, it
simply ignores bad proposals.

2.4.2 Characterization of Strategies

We will now discuss how different values of the concession degrees affect the
negotiation strategy. We define four strategies by setting the values of a1
and a2 either high or low.

Greedy: low a1, low a2. Only proposes very selfish plans. If it hasn’t
found any plans that are selfish enough, it prefers to continue searching for
them than to concede.

Lazy: high a1, low a2. Proposes very selfish plans, but if it can’t
find any, it will propose less selfish plans, rather than to search for better
solutions.

Picky: low a1, high a2. This agent is willing to propose altruistic plans,
but only if they are also selfish, otherwise it prefers to continue searching.
So it keeps searching until it finds a plan that is both very selfish and very
altruistic.

Desperate: high a1, high a2. Concedes fast, even if this will yield low
utility.

Roughly we can say that the higher the value of a1, the less the agent
likes to search. The higher the value of a2, the more altruistic the plans are
that the agent proposes (or is willing to accept). The Greedy strategy should
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only be played if the agent has little competition. If the agent knows it has
a stronger position than its opponents it can use this strategy to exploit
them. The Desperate strategy on the contrary, should only be played in a
highly competitive environment. If there is a lot of competition it is better
to try to come to an agreement as soon as possible, before the competition
takes away all the good deals.

The Lazy and Picky strategies are more moderate. The Lazy strategy
should be played if good plans are scarce. In such an environment it is not
likely to find many plans that are better than your current options, so it is
better to give up some utility than to continue searching for a better plan.
If good plans are abundant, it is better to play the Picky strategy. In that
case, if your current options are not good enough, instead of giving up utility
it is better to keep searching a bit more because it is likely that you will find
some better plan.

3 Implementation

In this section we will explain the implementation of a negotiating agent
that we have implemented for the Commodity Market example, based on
the NB3 algorithm.

3.1 Commodity Market Java Classes

The CommodityMarket project contains two packages, named commodityMarket.domain
and commodityMarket.agent. The first package contains all the classes
that define the Commodity Market domain. They allow you to start the
market and run the agent implemented for the market. Note that these
classes do not assume anything about the implementation of their agents.
Specifically, they are completely independent of the NB3 library. This allows
anyone to implement any kind of agent they like, not necessarily based on
the NB3 algorithm.

In the commodityMarket.domain package you will find a class named
CommodityMarket with a main method. When running this application a
random initial assignment of commodities is generated, represented by an
instance of the CommodityAssets class, as well as a random utility pro-
file (the requirement vectors), represented by the CommodityUtilityProfile
class. Then, it creates a Notary agent and starts a negotiation server which
allows agents to connect through a TCP/IP connection and participate in
the negotiations. Note that this application can also be run as a thread,
rather than as a process.
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The second package is the package where we have put the implementation
of our agent. The main class of the agent is Negotiator. The classes with a
name that starts with Cm are derived from classes in the NB3 library.

In order to run a negotiation session you should first run the Commod-
ityMarket and then run five agents. When starting an agent it will auto-
matically connect to the negotiation server and will start negotiating with
the other agents that are connected (it assumes the server is running on
localhost and on port 1234). For convenience we have added a class named
RunMarketAndFiveAgents with a main method. You only need to run this
application, and it will start a CommodityMarket as a thread for you, as
well as five instances of our agent, each also as a thread.

When the deadline finishes you will see that a number of log files will have
appeared at the path indicated in the RunMarketAndFiveAgents class. For
each negotiating agent there will be two log files: one containing information
about the nodes in its search tree (all the bounds, the normalized utility and
the expansion heuristic), and one file containing information about the deals
it has or has not proposed and accepted.

Furthermore, there is a log file for the server. This file contains all the
messages sent and received during the negotiations (including all proposals
made and accepted), the initial assets of the agents, their requirement vec-
tors, and the final outcome of the negotiations which is displayed as a table
that lists for each agent its initial utility and its final utility. If everything
is okay then no agent should have a final utility that is lower than its ini-
tial utility. Furthermore, if successful deals have been made, then at least
one agent participating in every such deal should have a final utility that is
higher than its initial utility.

Since the domains are randomly generated, it may occur that no prof-
itable deals are possible, or that it is simply too hard to find any profitable
deals. Therefore, you may need to run a couple of negotiation sessions before
you see any positive result.

3.2 Implementing the WorldState and Action classes

Before implementing the agent itself, we have to make sure that the NB3

algorithm can ‘understand’ the Commodity Market domain. This means
that we need to implement some classes that will form a bridge between the
domain and the NB3 algorithm.

NB3 assumes that any domain is described by an initial world state, and
that agents can execute actions to alter that state. The NB3 library therefore
contains abstract classes NB3WorldState and NB3Action that need to be
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implemented according to the domain.

Step 1: implement a WorldState class, derived from NB3WorldState

Our first step is in implementing an instance of NB3 is to implement a
class that will represent the world state. Note that the domain package
already contains such a class, namely CommodityAssets. However, the NB3

algorithm requires a class that extends the NB3WorldState class. There-
fore, we have created a new class named CmWorldState which is essen-
tially just a wrapper around the CommodityAssets class, but extends the
NB3WorldState class. We still need to implement a number of abstract
methods, which we will do below in step 3.

pub l i c c l a s s CmWorldState extends Nb3WorldState{

CommodityAssets commodityAssignment ;

CmWorldState ( CommodityAssets commodityAssignment ){
super ( CommodityAssets .NUM AGENTS) ;
t h i s . commodityAssignment = commodityAssignment ;
}

pub l i c Nb3WorldState copy ( ) {
//TODO: implement t h i s
}

pub l i c boolean i s L e g a l ( L i s t <? extends Nb3Action> a c t i o n s ) {
//TODO: implement t h i s
}

pub l i c void update ( ArrayList <? extends Nb3Action> a c t i o n s ) {
//TODO: implement t h i s
}

}

Step 2: implement an Action class, derived from NB3Action
Next, we need to create a class that will represent an Action. Again, the do-
main classes already contains such a class, namely CommodityTransaction,
but since NB3 requires a class that extends the NB3Action class we have
created a new class named CmAction which is essentially a wrapper around
the CommodityTransaction class, but extends NB3Action.

We now need to implement a method that returns the set of agents
that are involved in this action. The NB3 library specifies a class called
NB3AgentSet that represents a set of agents. It assumes that each agent
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is identified with a number from 1 to n (n is the number of agents taking
part in the negotiations). Since the Commodity Market makes the same
assumption it is again easy to implement this method. We just get the ID
of the supplying agent and the id of the consuming agent and put them into
this set.

IMPORTANT: as we will discuss later, the NB3 algorithm is initialized
with an array of Strings that maps the ID of each agent to the name of
each agent. We need to make sure that this array is the same as the array
that is received from the Notary at the beginning of the negotiation session,
otherwise the IDs used internally by the NB3 algorithm would not match
the IDs used by the Notary agent.

pub l i c c l a s s CmAction extends Nb3Action {

CommodityTransaction t r a n s a c t i o n ;

pub l i c CmAction ( CommodityTransaction t ransac t i on , S t r ing [ ] agentNames ){
t h i s . t r a n s a c t i o n = t r a n s a c t i o n ;
}

@Override
protec ted NB3AgentSet dete rminePart i c ipat ingAgents ( ) {

NB3AgentSet pa = new NB3AgentSet ( ) ;
pa . add ( t r a n s a c t i o n . getConsumer ( ) ) ;
pa . add ( t r a n s a c t i o n . g e tSupp l i e r ( ) ) ;

r e turn pa ;
}

}

Step 3: implement the methods of the WorldState class
We can now implement the methods of our WorldState class. There are
three methods:

• copy() should make a copy of the world state.

• isLegal() verifies whether it is possible to execute the given list of
actions on this world state.

• update() updates the WorldState object according to the given actions.

pub l i c Nb3WorldState copy ( ) {
re turn new CmWorldState ( t h i s . commodityAssets . copy ( ) ) ;
}

@Override
pub l i c boolean i s L e g a l ( L i s t <? extends NB3Action> a c t i o n s ) {

17



// check i f the bid i s v a l i d

// Create a temporary copy o f the cur rent CommodityAssets ob j e c t .
CommodityAssets tempCopy = t h i s . commodityAssets . copy ( ) ;

f o r ( NB3Action ac t i on : a c t i o n s ){
CmAction cmAction = ( CmAction ) ac t i on ;

// Let the ac t i on act on the a s s e t s .
tempCopy . exchange ( cmAction . t r a n s a c t i o n ) ;

}

//Now check that no agent has a negat ive amount o f any commodity .
f o r ( i n t agentID =0; agentID<commodityAssets .NUM AGENTS; agentID++){

f o r ( i n t commodity=0; commodity<commodityAssets .NUM COMMODITIES; commodity++){
i f ( tempCopy . ge tAsse t s ( agentID , commodity ) < 0){
re turn f a l s e ;
}
}
}

re turn true ;
}

pub l i c void update ( ArrayList <? extends Nb3Action> a c t i o n s ) {
f o r ( Nb3Action ac t i on : a c t i o n s ){
commodityAssets . exchange ( ( ( CmAction ) ac t i on ) . t r a n s a c t i o n ) ;
}
}

We have seen that in this case the implementation of our derived World-
State and Action classes was very simple, because the Commodity Market
domain already contained two classes representing world states and actions.
If you want to write an NB3 agent for another domain you may need to
be a bit more creative in order to fit the model of that domain with the
worldstate/action model of NB3.

3.3 Implementing the NB3 Algotithm

We are now ready to start implementing the actual algorithm. For this we
need to create a class, which we will call CmNB3Algorithm, which extends
the class NB3Algorithm.
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3.3.1 Implement getChildNodeType()

As explained above, the NB3 algorithm expands a search tree in which each
node is labeled with an action, or with a smaller component of an action.
In this tutorial we will make use of the fact that actions in the Commodity
Market domain consist of four components:

• the supplier

• the commodity

• the consumer

• the number of units

We will assume the following:

• The children of the root node (the nodes of depth 1) will all be labeled
by the name of an agent. These nodes are called supplier nodes.

• The children of any supplier node will be labeled with the name of a
commodity, and will therefore be called commodity nodes.

• The children of any commodity node will again be labeled with the
name of an agent, but these nodes will be called consumer nodes.

• The children of any consumer node will be labeled by an integer num-
ber. These nodes will be called quantity nodes.

• The children of any quantity node will again be supplier nodes, and
thus be labeled by the name of an agent

Each node is an object of class NB3Node, and has methods getType() and
getLabel(). The first will return an integer that identifies which type of node
it is (e.g. a supplier node or a commodity node), and getLabel() returns the
label of the node.

We first associate an integer to each type of node. The root node always
has type 0, while all other nodes have types 1 to n, where n is the number
of node types defined. So in this case, the supplier nodes have type 1, the
commodity nodes type 2, the consumer nodes type 3, and the quantity nodes
type 4. Then, in order to make sure that the NB3 algorithm indeed adds
the right type of child node under the node to split, we have to implement
getChildNodeType().

We should also make sure that in the constructor of CmNB3Algorithm
we call the constructor of the parent class with the value 4, to tell the parent
class that there are 4 types of nodes.

f i n a l s t a t i c i n t ROOT = 0 ;
f i n a l s t a t i c i n t SUPPLIER = 1 ;
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f i n a l s t a t i c i n t COMMODITY = 2 ;
f i n a l s t a t i c i n t CONSUMER = 3 ;
f i n a l s t a t i c i n t QUANTITY = 4 ;

//we have de f ined 4 node types ( apart from the root ) .
f i n a l s t a t i c i n t NUMBER OF NODE TYPES = 4 ;

CmNB3Algorithm( Negot ia tor agent ){
//Make sure the parent c l a s s knows how many node types we have de f ined .
super (NUMBER OF NODE TYPES) ;

t h i s . theAgent = agent ;
}

@Override
protec ted i n t getChildNodeType ( i n t typeOfNodeToSplit ){

switch ( typeOfNodeToSplit ) {
case ROOT:

return SUPPLIER;
case SUPPLIER:

re turn COMMODITY;
case COMMODITY:

return QUANTITY;
case QUANTITY:

re turn CONSUMER;
case CONSUMER:

return SUPPLIER;
d e f a u l t :
throw new I l l ega lArgumentExcept ion ( ”ExampleNB3Algorithm . getChildNodeType ( ) Error ! unknown node type : ” + typeOfNodeToSplit ) ;
}
}

3.3.2 Implement getSplitLabels()

In every iteration of the algorithm, a node is picked from the tree to be
expanded. In order to add children to this node, the algorithm needs to
know which labels it must add to the children, so it will call a method called
getSplitLabels(). We should implement this method such that it returns the
list of commodities when the selected node is a supplier node, and such that
it returns a list of consumer names when the selected node is a commodity
node, etcetera.

protec ted List<Object> g e t S p l i t L a b e l s (NB3Node nodeToSpl it ) {

// t h i s happens i f the re i s no more node to s p l i t in the queue .
i f ( nodeToSpl it == n u l l ){
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re turn n u l l ;
}

List<Object> c h i l d L a b e l s = new ArrayList <>();

CmWorldState wor ldState = ( CmWorldState ) t h i s . getCurrentState ( ) ;
i n t numAgents = wor ldState . commodityAssets .NUM AGENTS;
i n t numCommodities = wor ldState . commodityAssets .NUM COMMODITIES;

i n t supp l i e r ID ;
i n t commodityID ;

i n t childNodeType = getChildNodeType ( nodeToSpl it . getType ( ) ) ;

switch ( childNodeType ) {
case SUPPLIER: //add SUPPLIER nodes

f o r ( supp l i e r ID =0; suppl i e r ID<numAgents ; supp l i e r ID++){

// v e r i f y that we can add i t .
i f ( ! canBeAdded ( nodeToSplit , supp l i e r ID ) ){
cont inue ;
}

c h i l d L a b e l s . add ( supp l i e r ID ) ;
}

break ;
case COMMODITY: //add COMMODITY nodes

supp l i e r ID = ( i n t ) nodeToSpl it . getLabe l ( ) ;

f o r ( commodityID=0; commodityID<numCommodities ; commodityID++){

// v e r i f y that we can add i t .
i f ( ! canBeAdded ( nodeToSplit , commodityID )){
cont inue ;
}

//You can ’ t supply t h i s commodity i f you don ’ t have any un i t s o f t h i s commodity .
i f ( wor ldState . commodityAssets . ge tAsse t s ( suppl i e r ID , commodityID ) == 0){
cont inue ;
}

// i f yes , then add i t .
c h i l d L a b e l s . add ( commodityID ) ;
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}

break ;
case QUANTITY: //add QUANTITY nodes

// get the cur rent d i s t r i b u t i o n o f a s s e t s .
CommodityAssets a s s e t s = wor ldState . commodityAssets ;

// get the id o f the s u p p l i e r g iven in the grand parent node
supp l i e r ID = ( i n t ) nodeToSpl it . getParent ( ) . getLabe l ( ) ;

// get the id o f the commodity g iven in the parent node .
commodityID = ( i n t ) nodeToSpl it . getLabe l ( ) ;

//now f i n d out how many un i t s o f t h i s commodity the s u p p l i e r owns .
i n t theSupplierOwns = a s s e t s . g e tAsse t s ( suppl i e r ID , commodityID ) ;

i n t maxValue = 10 ;
i f ( theSupplierOwns < maxValue ){
maxValue = theSupplierOwns ;
}

// c r e a t e a l a b e l f o r each p o s s i b l e quant i ty
f o r ( i n t quant i ty =1; quantity<=maxValue ; quant i ty++){

I n t e g e r l a b e l = new I n t e g e r ( quant i ty ) ;

// v e r i f y that we can add i t .
i f ( ! canBeAdded ( nodeToSplit , l a b e l ) ){
cont inue ;
}

c h i l d L a b e l s . add ( l a b e l ) ;
}

break ;
case CONSUMER: //add CONSUMER nodes

supp l i e r ID = ( i n t ) nodeToSpl it . getParent ( ) . getParent ( ) . getLabe l ( ) ;
commodityID = ( i n t ) nodeToSpl it . getParent ( ) . getLabe l ( ) ;

f o r ( i n t consumerID=0; consumerID<numAgents ; consumerID++){

// the consumer cannot be the same as the s u p p l i e r .
i f ( consumerID == supp l i e r ID ){
cont inue ;
}
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// I t doesn ’ t make sense to supply anything to someone who
// doesn ’ t need that commodity .
i f ( theAgent . p r e f e r e n c e P r o f i l e . getRequirements ( consumerID , commodityID ) == 0){
cont inue ;
}

// v e r i f y that we can add i t .
i f ( ! canBeAdded ( nodeToSplit , consumerID )){
cont inue ;
}

c h i l d L a b e l s . add ( consumerID ) ;
}

break ;
d e f a u l t :
throw new I l l ega lArgumentExcept ion ( ”ExampleNB3Algorithm . g e t S p l i t L a b e l s ( ) Error ! unknown node type : ” + nodeToSpl it . getType ( ) ) ;
}

re turn c h i l d L a b e l s ;
}

3.3.3 Implement getParticipatingAgents()

Whenever the NB3 algorithm creates a new node, it must calculate the value
of the deal it represents for each agent that is involved in that deal. In order
to determine which agents are involved, it calls the method getParticipatingAgents()
which we should implement. The argument of this method is the branch of
the tree that runs from the root node down to the new node to create. It
must return the list of names of all agents participating in the deal.

We implement this, simply by looping over the given branch. If a node
is a consumer node or a supplier node, then we know its label represents the
name of an agent involved in the transaction, and hence in the deal, so we
add the name to the list (unless it is already in the list).

pub l i c NB3AgentSet ge tPar t i c i pa t ingAgent s ( ArrayList<NB3Node> branch ) {

NB3AgentSet pa r t i c i pa t i ngAgent s = new NB3AgentSet ( ) ;
f o r (NB3Node node : branch ){

i f ( node . getType ( ) == SUPPLIER | | node . getType ( ) == CONSUMER){
i n t agentID = ( i n t ) node . getLabe l ( ) ;
pa r t i c i pa t i ngAgen t s . add ( agentID ) ;
}
}
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re turn pa r t i c i pa t i ngAgent s ;
}

3.3.4 Implement branch2actions()

Whenever the NB3 algorithm finds a node ν that represents a deal that can
be considered to be proposed, the algorithm needs to create a NB3Proposal
object so that it can be stored and when the time is right proposed. In order
to do this it needs to collect the labels in the branch from the root to ν and
convert them into NB3Action objects. To accomplish this the algorithm
calls the method branch2actions().

pub l i c L i s t <? extends NB3Action> branch2act ions ( Li s t<NB3Node> branch ) {

List<CmAction> a c t i o n s = new ArrayList<CmAction>() ;

i n t s u p p l i e r = −1;
i n t commodity = −1;
i n t quant i ty = −1;
i n t consumer = −1;

f o r (NB3Node node : branch ){

i f ( node . getType ( ) == SUPPLIER){

s u p p l i e r = ( i n t ) node . getLabe l ( ) ;

} e l s e i f ( node . getType ( ) == COMMODITY){

commodity = ( i n t ) node . getLabe l ( ) ;

} e l s e i f ( node . getType ( ) == QUANTITY){

quant i ty = ( i n t ) node . getLabe l ( ) ;

} e l s e i f ( node . getType ( ) == CONSUMER){

consumer = ( i n t ) node . getLabe l ( ) ;

}

//Every 4 th node in the branch r e p r e s e n t s a new ac t i on . Therefore , a f t e r every
//4 th node we c o l l e c t the va lue s o f the prev ious 4 nodes and put them toge the r
// in to an ac t i on .
i f ( node . getType ( ) == NUMBER OF NODE TYPES){
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i f ( s u p p l i e r == −1 | | commodity == −1 | | consumer == −1 | | quant i ty == −1){
throw new I l l ega lArgumentExcept ion ( ” branch2act ions ( ) Error ! the components o f the CommodityTransactions have not been s e t c o r r e c t l y . ” ) ;
}

///now that we have a l l l a b e l s , we can c r e a t e a t r a n s a c t i o n ob j e c t
CommodityTransaction t r a n s a c t i o n =
new CommodityTransaction ( supp l i e r , commodity , quantity , consumer ) ;

//wrap the t r a n s a c t i o n ob j e c t i n to a CmAction .
CmAction ac t i on = new CmAction ( t ransac t i on , getAgentNames ( ) ) ;

// s t o r e the ac t i on in the l i s t .
a c t i o n s . add ( ac t i on ) ;

// r e s e t the se va lue s .
s u p p l i e r = −1;
commodity = −1;
quant i ty = −1;
consumer = −1;

}

}

re turn a c t i o n s ;
}

3.3.5 Implementing actions2Labels()

Whenever the NB3 algorithm receives a proposal from another agent, the
proposal must be converted into a list of labels, so that a new branch can
be added to the tree that represents this proposal.

pub l i c L i s t<Object> ac t i on s2Labe l s ( L i s t <? extends NB3Action> a c t i o n s ) {

List<CmAction> cmActions = ( List<CmAction>) a c t i o n s ;

//make sure that the a c t i o n s are in the r i g h t order so that they can be added
// to the t r e e in the r i g h t order .
// This i s not s t r i c t l y necessary , but i f not , i t could mean we are adding a dea l
// to the t r e e that i s a l r eady repre s ented in a d i f f e r e n t branch .
C o l l e c t i o n s . s o r t ( cmActions ) ;

// c r e a t e a l i s t to put the l a b e l s in and return .
L i s t<Object> l a b e l s = new ArrayList<>(cmActions . s i z e ( ) ∗ NUMBER OF NODE TYPES) ;
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f o r ( CmAction ac t i on : cmActions ){

// Important ! the se l a b e l s should be added in exac t l y t h i s order ,
// because t h i s i s a l s o the order in which the t r e e search adds
// l a b e l s to the tree ,
l a b e l s . add ( ac t i on . t r a n s a c t i o n . g e tSupp l i e r ( ) ) ;
l a b e l s . add ( ac t i on . t r a n s a c t i o n . getCommodity ( ) ) ;
l a b e l s . add ( ac t i on . t r a n s a c t i o n . getQuantity ( ) ) ;
l a b e l s . add ( ac t i on . t r a n s a c t i o n . getConsumer ( ) ) ;

}

re turn l a b e l s ;
}

3.3.6 Implementing the Bounds

The most important part of the implementation of the algorithm is the cal-
culation of the upper- and lower- bounds and the intermediate value. Every
time the algorithm creates a new node ν it calls the methods calculateIn-
termediateValue(), calculateUpperBound() and calculateLowerBound() to
calculate the bounds for each agent for that node. The algorithm passes a
list to these methods that contains the branch of nodes from the root to the
node ν (excluding the root). So the last node in this list is the new node ν,
the second last node in this list is the parent of ν, the third last node is the
grand parent of ν, etcetera, and the first node in the list is a child of the
root node.

Let’s start with the intermediate values ei(ν). We first convert the
branch into a list of CmAction objects and then let those actions act on
a copy of the current world state. Note that this only takes the first 4 · n
nodes of the branch into account, for some integer n. Therefore, if the depth
of node ν is not a multiple of 4 its intermediate value will be equal to its
parent’s intermediate value.

We can refine this calculation however, for Quantity nodes. If a node
ν is a quantity node then ν and its parent ν ′ and its grandparent ν ′′ form
a partially defined action that specifies that a certain negotiator will give
away a certain amount of units of a certain commodity. The only thing we
do not know yet is which other negotiator will be the consumer. However,
even without knowing the consumer we can already subtract the commodity
units from the supplier’s assets.

@Override
pub l i c f l o a t ca l cu l a t e In t e rmed ia t eVa lue ( i n t agentID , Lis t<NB3Node> branch , NB3WorldState ws){
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// convert the branch in to a l i s t o f a c t i o n s
Lis t<CmAction> a c t i o n s = ( List<CmAction>) t h i s . branch2act ions ( branch ) ;

// c ra t e a copy o f the cur rent world s t a t e and l e t those a c t i o n s modify t h i s copy .
CmWorldState tempState = ( CmWorldState ) t h i s . getCurrentState ( ) . copy ( ) ;
tempState . update ( a c t i o n s ) ;

// I f the l a s t node o f the branch i s a QUANTITY node , then we can r e f i n e
// the c a l c u l a t i o n , because we can subt rac t a number o f un i t s o f a
// c e r t a i n commodity from i t s a s s e t s . ( however we do not know to which consumer
// t h i s w i l l be g iven )
i f ( branch . s i z e ( ) > 0){
NB3Node lastNodeInBranch = branch . get ( branch . s i z e ( ) − 1 ) ;
i f ( lastNodeInBranch . getType ( ) == QUANTITY){

// get the s u p p l i e r .
i n t supp l i e r ID = ( i n t ) lastNodeInBranch . getParent ( ) . getParent ( ) . getLabe l ( ) ;

// i f the s u p p l i e r i s not the same as the agent f o r which we are c a l c u l a t i n g
// the in te rmed ia t e value , then t h i s w i l l not have any e f f e c t .
i f ( supp l i e r ID == agentID ){

i n t quant i ty = ( i n t ) lastNodeInBranch . getLabe l ( ) ;
i n t commodityID = ( i n t ) lastNodeInBranch . getParent ( ) . getLabe l ( ) ;

i n t o ldStockS i z e = tempState . commodityAssets . ge tAsse t s ( suppl i e r ID , commodityID ) ;
i n t newStockSize = o ldStockS i z e − quant i ty ;
tempState . commodityAssets . s e t A s s e t s ( suppl i e r ID , commodityID , newStockSize ) ;
}

}
}

//Now use the a s s e t s o f the copied world s t a t e to c a l c u l a t e the u t i l i t y va lue
// o f the agent .
i n t va lue = theAgent . p r e f e r e n c e P r o f i l e . c a l cu l a t eVa lue ( agentID , tempState . commodityAssets ) ;

r e turn ( f l o a t ) va lue ;

}

Now, in order to calculate the upper bound of an agent, one should
realize that the absolute maximum you could ever achieve is when all the
other agents give all their assets to you. However, we can refine this, because
we notice that it does not make sense to propose a deal that contains an
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action in which agent α2 receives a unit of Gold from α1, but also contains
an action in which agent α2 supplies a unit of Gold to another agent α3.
Such a deal does not make sense because α1 may just as well directly give
his Gold to α3.

This means that to calculate the upper bound for an agent αi, we don’t
have to assume that αi receives all assets from he will receive those assets
for which αi has not yet acted as a supplier in the same branch.

pub l i c f l o a t calculateUpperBound ( i n t agentID , Li s t<NB3Node> branch , NB3WorldState ws ) {

//We can c a l c u l a t e the upper bound o f any agent by assuming that a l l other
// agents w i l l g ive everyth ing they own to the g iven agent .

//However , i f the g iven agent a l r eady has supp l i ed a c e r t a i n commodity ,
// then i t doesn ’ t make sense to a l s o consume i t in the same dea l .
// Therefore , we can ignore such t r a n s a c t i o n s to r e f i n e the upper bound .

//Make a copy o f the cur rent s t a t e and get the commodities c u r r e n t l y owned
//by the agent .
CommodityAssets maximalAssets = ( ( CmWorldState )ws ) . commodityAssets . copy ( ) ;

// Let a l l other agents g ive t h e i r a s s e t s to the cur rent agent , except when
// the cur rent agent has a l r eady acted
// as a s u p p l i e r f o r a c e r t a i n commodity in the branch .
f o r ( i n t otherAgentID = 0 ; otherAgentID<maximalAssets .NUM AGENTS; otherAgentID++){

i f ( otherAgentID == agentID ){
cont inue ;
}

f o r ( i n t commodity=0; commodity<maximalAssets .NUM COMMODITIES; commodity++){

i f ( ! hasSuppl ied ( agentID , commodity , branch ) ){
// check i f the g iven agent appears as a s u p p l i e r o f t h i s commodity in
// the g iven branch .

i n t quant i ty = maximalAssets . ge tAsse t s ( agentID , commodity ) + maximalAssets . g e tAsse t s ( otherAgentID , commodity ) ;

maximalAssets . s e t A s s e t s ( agentID , commodity , quant i ty ) ;
}
}
}

// c a l c u l a t e the u t i l i t y va lue o f the g iven agent when i t has r e c e i v e d a l l a s s e t s
// o f a l l other agents and return t h i s va lue as the upper bound .
i n t va l = t h i s . theAgent . p r e f e r e n c e P r o f i l e . c a l cu l a t eVa lue ( agentID , maximalAssets ) ;
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re turn va l ;

}

Similarly, we can calculate the lower bound of a node ν for some negotia-
tor, by assuming he may give everything away that he has, except for those
commodities for which he has already acted as a consumer in the branch to
ν.

pub l i c f l o a t calculateLowerBound ( i n t agentID , Lis t<NB3Node> branch , NB3WorldState ws ) {

i f ( branch . s i z e ( ) < NUMBER OF NODE TYPES){
re turn 0 f ;
}

// I f agent A has r e c e i v e d a c e r t a i n commodity , then i t doesn ’ t make sense to
// g ive i t away again in the same dea l .
// Therefore , the lower bound can be c a l c u l a t e d by removing a l l commodities
// the agent has not r e c e i v e d .

//Make a copy o f the cur rent s t a t e and get the commodities c u r r e n t l y owned
//by the agent .
CommodityAssets a s s e t s = ( ( CmWorldState )ws ) . commodityAssets . copy ( ) ;
i n t [ ] agentAssets = a s s e t s . ge tAsse t s ( agentID ) ;

// s e t a l l i t s commodities to zero , except those f o r which the g iven agent has acted as a consumer in the branch .
f o r ( i n t commodity=0; commodity<a s s e t s .NUM COMMODITIES; commodity++){

i f ( ! hasConsumed ( agentID , commodity , branch ) ){
agentAssets [ commodity ] = 0 ;
}
}

re turn t h i s . theAgent . p r e f e r e n c e P r o f i l e . c a l cu l a t eVa lue ( agentID , agentAssets ) ;

}

/∗∗
∗ Returns t rue i f the g iven agent has acted as a consumer f o r the g iven
∗ commodity in the g iven branch .
∗ Returns f a l s e o therwi s e .
∗
∗ @param agentName
∗ @param currentCommodity
∗ @param branch
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∗ @return
∗/

boolean hasConsumed ( i n t agentID , i n t currentCommodity , L i s t<NB3Node> branch ){

f o r ( i n t i =0; i<branch . s i z e ( ) ; i+=NUMBER OF NODE TYPES){

i n t consumer = −1;
i n t commodity = −1;

f o r ( i n t j =0; j<NUMBER OF NODE TYPES; j++){

i f ( i+j >= branch . s i z e ( ) ){
break ;
}

NB3Node node = branch . get ( i+j ) ;

i f ( node . getType ( ) == CONSUMER){
consumer = ( i n t ) node . getLabe l ( ) ;
} e l s e i f ( node . getType ( ) == COMMODITY){

commodity = ( i n t ) node . getLabe l ( ) ;
}

}

i f ( consumer == agentID && commodity == currentCommodity ){
re turn true ;
}

}

re turn f a l s e ;
}

3.3.7 Implementing negotiate()

Now, in order to get the agent negotiating, we have to write the method
that initiates the algorithm. We have called this method negotiate() and it
is called from the main() method (if the agent is run as a process), or from
the run() method (if the agent is run as a thread).

The negotiate method first connects to the server, by calling negoClient.connect(this.myName)
and then waits till it receives a message from the notary that the negotiation
session has started, by calling negoClient.waitTillReady(). This method re-
turns an array with objects that contain information (sent to the agent by
the Notary) about the negotiation domain, such as the deadline, the names
and IDs of the negotiators, the initial assets and the requirement vectors (as
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explained above the requirement vectors returned by the notary are not the
exact requirement vectors that determine the agents’ profits but copies with
a bit of random noise added, so that they only yield approximations to the
actual utility functions).

It then initializes the NB3 algorithm by calling
nb3Algorithm.initialize(myName, agentNames, nb3InitialState, deadline);
Note that the array agentNames must be exactly the same as the one re-
turned by the Notary, because it maps the agents’ IDs to their names. This
mapping is used by the Notary as well as by the NB3 algorithm and problems
could occur if they would use a different mapping.

Finally, we enter the loop that implements the negotiation process.

// loop u n t i l the dead l ine i s reached , or a dea l has been conf irmed .
whi l e ( currentTime < t h i s . dead l ine ){

//Expand the search t r e e .
nb3Algorithm . expand ( ) ;

// See i f we have r e c e i v e d any message .
i f ( negoCl i ent . hasMessage ( ) ){

// i f yes , remove i t from the message queue .
Message msg = negoCl ient . removeMessageFromQueue ( ) ;

// convert i t so that the NB3 algor i thm can handle i t .
NB3Message nb3msg = nb3Algorithm . convertMessage (msg ) ;

// l e t the NB3 algor i thm handle the message .
nb3Algorithm . handleIncomingMessages ( nb3msg ) ;
}

//Check i f enough time has passed s i n c e our l a s t ’ accept−or−propose d e c i s i o n ’
//and i f yes make another accept−or−propose d e c i s i o n .
i f ( currentTime − t i m e l a s t d e c i s i o n > d e l i b e r a t i o n t i m e ){

t i m e l a s t d e c i s i o n = currentTime ;
nb3Algorithm . acceptOrPropose ( ) ;
}

currentTime = System . cur rentT imeMi l l i s ( ) ;
}

3.4 Implementing the Communication Methods

NB3 assumes that agents propose and accept deals by exchanging messages.
These messages are represented by the NB3Message class. Of course, the
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domain for which you are writing an agent generally defines its own class
to represent messages. Since NB3 should not assume anything about the
implementation of messages in the domain, and the domain cannot know
anything about the NB3 implementation, you should implement two meth-
ods that convert the messages of the domain to objects of the NB3Message
class and vice versa.

3.4.1 Implementing convertMessage()

This method takes a message received from the server and must convert it
into an NB3Message object so that the NB3 algorithm can handle it.

protec ted NB3Message convertMessage ( Object domainMessage ){

Message domainMsg = ( Message ) domainMessage ;

// Convert the p a r t i c l e o f the message in to an MsgType .
MsgType msgType ;
i f ( domainMsg . getPer fo rmat ive ( ) . equa l s ( ”PROPOSE” )){
msgType = MsgType .PROPOSE;
} e l s e i f ( domainMsg . getPer fo rmat ive ( ) . equa l s IgnoreCase ( ”ACCEPT” )){

msgType = MsgType .ACCEPT;
} e l s e i f ( domainMsg . getPer fo rmat ive ( ) . equa l s ( ”CONFIRM” )){

msgType = MsgType .CONFIRM;
} e l s e i f ( domainMsg . getPer fo rmat ive ( ) . equa l s ( ”REJECT” )){

msgType = MsgType .REJECT;
} e l s e i f ( domainMsg . getPer fo rmat ive ( ) . equa l s ( ”ILLEGAL” )){

msgType = MsgType . ILLEGAL;
} e l s e {

throw new I l l ega lArgumentExcept ion ( ”ExampleAgent . convertMessage ( ) Error ! unknown per fo rmat ive : ” + domainMsg . getPer format ive ( ) ) ;
}

// Extract the Proposal ob j e c t from the incoming message
Proposal proposa l = ( Proposal ) domainMsg . getContent ( ) ;

// Extract the l i s t o f proposed t r a n s a c t i o n s from the proposa l .
L i s t<CommodityTransaction> t ransAct ions =
( Lis t<CommodityTransaction>)proposa l . getProposedDeal ( ) ;

// Convert the t r a n s a c t i o n s in to NB3 type a c t i o n s .
ArrayList<CmAction> a c t i o n s = new ArrayList <>();
f o r ( CommodityTransaction t r a n s a c t i o n : t ransAct ions ){

a c t i o n s . add (new CmAction ( t ransac t i on , theAgent . agentNames ) ) ;
}

NB3Message nb3Message = new NB3Message ( domainMsg . getSender ( ) ,
domainMsg . g e tRece i v e r s ( ) , msgType , ac t ions , proposa l . ge t Id ( ) ) ;
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re turn nb3Message ;
}

The NB3 algorithm assumes that each proposal is identified with an
ID of type String. This is useful because it means that when accepting a
proposal the NB3 algorithm only needs to provide the id of that proposal
in the ACCEPT message, rather than the proposal itself and it means that
when receiving an ACCEPT message it is easier for NB3 to check that it
indeed corresponds to a proposal made earlier.

In our implementation of the Unstructured Negotiation Protocol we have
made similar assumptions. Each message must contain a proposal ID so that
it is easier for the Notary to check which proposals have been accepting by
whom.

When converting a domain message to an NB3Message we can therefore
simply copy the proposalID from the domain message into the NB3Message.
However, when working in a different domain you may need to write code
to generate a proposal ID.

3.4.2 sendMessage()

The method sendMessage() essentially does the opposite. Whenever the
NB3 algorithm decides to accept a proposal or make a new proposal it calls
this method. This method should then be implemented by you so that it
correctly converts the given NB3Proposal object into a message that can be
sent to the server.

protec ted void sendMessage ( NB3Proposal nextProposal , MsgType messageType ) {

St r ing sender = theAgent . name ;
Li s t<Str ing> r e c e i v e r s = nextProposa l . g e tPar t i c i pa t ingAgent s ( ) ;

S t r ing msgPart i c l e ;
i f ( messageType == MsgType .ACCEPT){
msgPart i c l e = ”ACCEPT” ;
} e l s e i f ( messageType == MsgType .PROPOSE){

msgPart i c l e = ”PROPOSE” ;
}

List<CommodityTransaction> dea l = new ArrayList <>();
f o r ( NB3Action ac t i on : nextProposa l . ge tAct ions ( ) ){

dea l . add ( ( ( CmAction ) ac t i on ) . t r a n s a c t i o n ) ;
}

Message msg = new Message ( sender , r e c e i v e r s , msgPart ic le , dea l ) ;
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t h i s . theAgent . sendMessage (msg ) ;

}

4 Final remarks

When implementing NB3 it is best if you make sure that each possible pro-
posal can be represented by a branch of nodes in the tree in a unique way.
Otherwise the algorithm may become very inefficient, because many propos-
als could be represented in the tree multiple times, by different branches. In
particular this may happen when a deal is represented by a set of actions
for which the order is irrelevant.

5 Exercises

Exercise 1

Start a negotiation session by running the class RunMarketAndFiveAgents.
After 30 seconds you should see the results of the negotiations.

Now go to the logfolderPath specified in the source code of this class
and check that indeed a folder has been created with the log files for all
negotiators and the server.

Open the server log file and determine how many proposals each agent
has made. For each proposal message sent, the log file should contain some-
thing like:

sent message:
message ID: Bob 1
conversation ID:
from: Bob
to: [Charles]
particle: PROPOSE
content: Proposal ID: Bob1
Participants: [Bob, Charles]
Proposed Deal: [agent 2 gives 7 units of 1 to agent 3, agent 3 gives 10 units
of 0 to agent 2, agent 3 gives 10 units of 2 to agent 2]

Of course, the details are different for each proposal. The line particle:
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PROPOSE indicates that this is a proposal. The log will also contain mes-
sages of type REGISTER, INFORM and START. You can ignore these,
they form part of the communication protocol.

If the negotiations were successful you will also find messages of type
ACCEPT and CONFIRM. How many times has a proposal been accepted?
How many proposals have been confirmed?

Remember that the instance of the CommodityMarket is created ran-
domly every time you run a new negotiation session. Therefore, in some
cases the agents may not find any good proposal at all, so you may need to
run several negotiation sessions before anything interesting happens. If after
a couple of times the agents still don’t make any proposals it may be better
to continue with the other exercises to improve the agent and get back to
this exercise with your improved agent.

Exercise 2

Make a copy of the commodityMarket.agent package so that you can adapt
the agent and change the name of the Negotiator class to whatever you like,
for example MyNegotiator.

Let us improve the calculateUpperBound() method in the CmNB3Algorithm
class. In the current implementation the upper bound of an agent x is cal-
culated by assuming that all other agent will give all their assets to that
agent x. However, it does not make sense to make a deal in which agent
x receives a commodity c from agent y and at the same time gives some
units of commodity c to another agent z. Therefore, we have excluded those
commodities for which agent x has already appeared as a supplier in the
same branch.

The same reasoning can also be applied for the other agents: if some
agent y already appears as a consumer of commodity c in the branch, then
he will not also appear as a supplier lower in the branch. Therefore we can
ignore transactions in which such an agent gives this commodity to agent
x. Your task is therefore to adapt calculateUpperBound() such that it will
also skip such transactions.

Exercise 3

Again, make sure that you have a copy of the commodityMarket.agent pack-
age. You can continue to work with the copy of the previous exercise, or
make yet another copy. Now, in the constructor of your MyNegotiator class
add the following line:
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t h i s . nb3Algorithm . setConces s ionDegrees (2 , 4 ) ;

With this line you can set the concession degrees discussed in Section 2.4.
Replace the values 2 and 4 by anything you like. Experiment with this:

run several negotiations sessions with different values and see if you get
better results with different values. You can for example run 5 different
agents in each session with five different settings for these values and repeat
this a number of times.

In order to obtain enough data you may want to put the code of Run-
MarketAndFiveAgents that runs a negotiation session in a loop so you can
run the same instance many times with different values and compare the
results.
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